Винная кислота: структурная формула, свойства, получение и применение. Изменение цвета индикаторов в растворах Структурная формула кислот

Кислоты – это сложные вещества, молекулы которых состоят из атомов водорода, способных замещаться, и кислотных остатков.

Кислотный остаток имеет отрицательный заряд.

Бескислородные кислоты: HCl, HBr, H 2 S и т.д.

Элемент, который вместе с атомами водорода и кислорода образует молекулу кислородсодержащей кислоты, называют кислотообразующим .

По числу в молекуле атомов водорода кислоты подразделяют на одноосновные и многоосновные .

Одноосновные кислоты содержат один атом водорода: HCl, HNO 3 , HBr и т.д.

Многоосновные кислоты содержат два и более атомов водорода: H 2 SO 4 (двухосновная), H 3 PO 4 (трехосновная).

В бескислородных кислотах к названию элемента, который образует кислоту, прибавляют соединительную гласную «о» и слова «…водородная кислота ». Например: HF – фтороводородная кислота.

Если кислотообразующий элемент проявляет максимальную степень окисления (она соответствует номеру группы), то к названию элемента прибавляют «…ная кислота». Нопример:

HNO 3 – азотная кислота (потому что атом азота имеет максимальную степень окисления +5)

Если степень окисления элемента ниже максимальной, то прибавляют «…истая кислота»:

1+3-2
HNO 2 – азотистая кислота (т.к. кислотообразующий элемент N имеет минимальную степень окисления).

H 3 PO 4 – орто фосфорная кислота.

HPO 3 – мета фосфорная кислота.

Структурные формулы кислот.

В молекуле кислородсодержащей кислоты атом водорода связан с атомом кислотообразующего элемента через атом кислорода. Поэтому при составлении структурной формулы к атому кислотообразующего элемента в первую очередь нужно присоединить все гидроксид-ионы.

Затем оставшиеся атомы кислорода двумя черточками соединить непосредственно с атомами кислотообразующего элемента (рис.2).

2. Основания взаимодействуют с кислотами с образованием соли и воды (реакция нейтрализации). Например:

КОН + НС1 = КС1 + Н 2 О;

Fe(OH) 2 +2HNO 3 = Fe(NO 3) 2 + 2Н 2 О

3. Щелочи взаимодействуют с кислотными оксидами с образованием соли и воды:

Са(ОН) 2 + СО 2 = СаСО 2 + Н 2 О.

4. Растворы щелочей взаимодействуют с растворами солей, если в результате образуется нерастворимое основание или нерастворимая соль. Например:

2NaOH + CuSO 4 = Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ва(ОН) 2 + Na 2 SO 4 = 2NaOH + BaSO 4 ↓

5. Нерастворимые основания при нагревании разлагаются на основный оксид и воду.

2Fе(ОН) 3 Fе 2 О 3 + ЗН 2 О.

6. Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды (Zn, Al и др.).

2AI + 2КОН + 6Н 2 О = 2K + 3H 2 .

Получение оснований

    Получение растворимых оснований :

а) взаимодействием щелочных и щелочноземельных металлов с водой:

2Na + 2Н 2 О = 2NaOH + Н 2 ;

б) взаимодействием оксидов щелочных и щелочноземельных металлов с водой:

Na 2 O + Н 2 О = 2NaOH.

2. Получение нерастворимых оснований действием щелочей на растворимые соли металлов:

2NaOH + FeSO 4 = Fe(OH) 2 ↓ + Na 2 SO 4 .

Кислоты ‑ сложные вещества, при диссоциации которых в воде, образуются ионы водорода H + и никаких других катионов.

Химические свойства

Общие свойства кислот в водных растворах обусловлены присутствием ионов Н + (вернее H 3 O +), которые образуются в результате электролитической диссоциации молекул кислот:

1. Кислоты одинаково изменяют цвет индикаторов (табл. 6).

2. Кислоты взаимодействуют с основаниями.

Например:

Н 3 РО 4 + 3NaOH=Na 3 PO 4 +ЗН 2 О;

Н 3 РО 4 + 2NaOH = Na 2 HPO 4 + 2Н 2 О;

Н 3 РО 4 + NaOH = NaH 2 PO 4 + Н 2 О;

3. Кислоты взаимодействуют с основными оксидам:

2НСl + СаО = СаС1 2 + Н 2 О;

H 2 SO 4 +Fe 2 O 3 = Fe 2 (SO 4) 3 + ЗН 2 О.

4. Кислоты взаимодействуют с амфотерными оксидами:

2HNO 3 + ZnO = Zn(NO 3) 2 + Н 2 О.

5. Кислоты взаимодействуют с некоторыми средними солями с образованием новой соли и новой кислоты, реакции возможны в том случае, если в результате образуется нерастворимая соль или более слабая (или более летучая) кислота, чем исходная. Например:

2НС1+Na 2 CO 3 = 2NaCl+H 2 O +CO 2 ;

2NaCl + H 2 SO 4 = 2HCl + Na 2 SO 4 .

6. Кислоты взаимодействуют с металлами. Характер продуктов этих реакций зависит от природы и концентрации кислоты и от активности металла. Например, разбавленная серная кислота, хлороводородная кислота и другие кислоты-неокислители взаимодействуют с металлами, которые находятся в ряду стандартных электродных потенциалов (см. главу 7.) левее водорода. В результате реакции образуются соль и газообразный водород:

H 2 SO 4 (разб)) + Zn = ZnSO 4 + Н 2 ;

2НС1 + Mg = MgCl 2 + H 2 .

Кислоты-окислители (концентрированная серная кислота, азотная кислота HNO 3 любой концентрации) взаимодействуют и с металлами, стоящими в ряду стандартных электродных потенциалов после водорода с образованием соли и продукта восстановления кислоты. Например:

2H 2 SO 4 (конц) + Zn = ZnSO 4 +SO 2 + 2H 2 O;

Получение кислот

1. Бескислородные кислоты получают путем синтеза из простых веществ и последующим растворением продукта в воде.

S + Н 2 = Н 2 S.

2. Оксокислоты получают взаимодействием кислотных оксидов с водой.

SO 3 + Н 2 О = H 2 SО 4 .

3. Большинство кислот можно получить взаимодействием солей с кислотами.

Na 2 SiО 3 + H 2 SO 4 = H 2 SiО 3 + Na 2 SO 4 .

Амфотерные гидроксиды

1. В нейтральной среде (чистая вода) амфотерные гидроксиды практически не растворяются и не диссоциируют на ионы. Они растворяются в кислотах и щелочах. Диссоциацию амфотерных гидроксидов в кислой и щелочной средах можно выразить следующими уравнениями:

Zn+ OH - Zn(OH)H + + ZnO

А1 3+ + ЗОН - Al(OH) 3 H + + AlO+ H 2 O

2. Амфотерные гидроксиды взаимодействуют как с кислотами, так и со щелочами, образуя соль и воду.

Взаимодействие амфотерных гидроксидов с кислотам:

Zn(OH) 2 + 2НCl + ZnCl 2 + 2Н 2 О;

Sn(OH) 2 + H 2 SO 4 = SnSO 4 + 2Н 2 О.

Взаимодействие амфотерных гидроксидов со щелочами:

Zn(OH) 2 + 2NaOH Na 2 ZnO 2 + 2H 2 O;

Zn(OH) 2 + 2NaOH Na 2 ;

Pb(OH) 2 + 2NaOHNa 2 .

Соли – продукты замещения атомов водорода в молекуле кислоты на атомы металла или замещения гидроксид-иона в молекуле основания кислотными остатками.

Общие химические свойства солей

1. Соли в водных растворах диссоциируют на ионы:

а) средние соли диссоциируют на катионы металлов и анионы кислотных остатков:

NaCN =Na + +СN - ;

6) кислые соли диссоциируют на катионы металла и сложные анионы:

KHSО 3 = К + + HSO 3 - ;

в) основные соли диссоциируют на сложные катионы и анионы кислотных остатков:

АlОН(СН 3 СОО) 2 =АlОН 2+ + 2СН 3 СОО - .

2. Соли взаимодействуют с металлами с образованием новой соли и нового металла. Данный металл может вытеснять из растворов солей только те металлы, которые находятся правее его в электрохимическом ряду напряжения:

CuSO 4 + Fe = FeSO 4 + Сu.

    Растворимые соли взаимодействуют со щелочами с образованием новой соли и нового основания. Реакция возможна, если образующееся основание или соль выпадают в осадок.

Например:

FeCl 3 +3КОН = Fe(OH) 3 ↓+3КС1;

К 2 СО 3 +Ba(OH) 2 = ВаCO 3 ↓+ 2КОН.

4. Соли взаимодействуют с кислотами с образованием новой более слабой кислоты или новой нерастворимой соли:

Na 2 CO 3 + 2HC1 = 2NaCl + CO 2 + H 2 O.

При взаимодействии соли с кислотой, образующей данную соль, получается кислая соль (это возможно в том случае, если соль образована многоосновной кислотой).

Например:

Na 2 S + H 2 S = 2NaHS;

CaCO 3 + CO 2 + H 2 O = Ca(HCО 3) 2 .

5. Соли могут взаимодействовать между собой с образованием новых солей, если одна из солей выпадает в осадок:

AgNO 3 + KC1 = AgCl↓ + KNO 3 .

6. Многие соли разлагаются при нагревании:

MgCО 3 MgO+ CО 2 ;

2NaNO 3 2NaNO 2 + O 2 .

7. Основные соли взаимодействуют с кислотами с образованием средних солей и воды:

Fe(OH) 2 NO 3 +HNO 3 = FeOH(NO 3) 2 +H 2 O;

FeOH(NO 3) 2 +HNO 3 = Fe(NO 3) 3 + H 2 O.

8. Кислые соли взаимодействуют с щелочами с образованием средних солей и воды:

NaHSO 4 + NaOH = Na 2 SO 3 + H 2 O;

КН 2 РО 4 + КОН = К 2 НРО 4 + Н 2 О.

Получение солей

Все способы получения солей основаны на химических свойствах важнейших классов неорганических соединений. Десять классических способов получения солей представлены в таблице. 7.

Кроме общих способов получения солей, возможны и некоторые частные способы:

1. Взаимодействие металлов, оксиды и гидроксиды которых являются амфотерными, со щелочами.

2. Сплавление солей с некоторыми кислотными оксидами.

K 2 CO 3 + SiO 2 K 2 SiO 3 + CO 2 .

3. Взаимодействие щелочей с галогенами:

2КОН +Сl 2 KCl +KClO + H 2 O.

4. Взаимодействие галогенидов с галогенами:

2КВг + Cl 2 = 2КС1 +Вг 2.

При графическом изображении формул веществ указывается последовательность расположения атомов в молекуле с помощью, так называемых валентных штрихов (термин «валентный штрих» предложил в 1858 г. А. Купер для обозначения химических сил сцепления атомов), иначе называемых валентной чертой (каждая валентная черта, или валентный штрих, эквивалентны одной паре электронов в ковалентных соединениях или одному электрону, участвующему в образовании ионной связи). Часто неправильно принимают графическое изображение формул за структурные формулы, приемлемые только для соединений с ковалентной связью и показывающие взаимное расположение атомов в молекуле.

Так, формула N а—С L не является структурной, так как N аСI — ионное соединение, в его кристаллической решетке отсутствуют молекулы (молекулы N аС L существуют только в газовой фазе). В узлах кристаллической решетки N аСI находятся ионы, причем каждый N а + окружен шестью хлорид-ионами. Это графическое изображение формулы вещества, показывающее, что ионы натрия не связаны между собой, а с хлорид-ионами. Не соединяются между собой и хлорид-ионы, они соединены с ионами натрия.

Покажем это на примерах. Мысленно предварительно «разбиваем» лист бумаги на несколько столбцов и выполняем действия согласно алгоритмам по графическому изображению формул оксидов, оснований, кислот, солей в следующем порядке.

Графическое изображение формул оксидов (например, А l 2 O 3 )

III II

1. Определяем валентность атомов элементов в А l 2 O 3

2. Записываем химические знаки атомов металлов на первое место (первый столбец). Если атомов металлов больше одного, то записываем и в один столбец и обозначаем валентность (число связей между атомами) валентными штрихами


З. Второе место (столбец), тоже в один столбец, занимают химические знаки атомов кислорода, причем к каждому атому кислорода должно подходить по два валентных штриха, так как кислород двухвалентен


lll ll l


Графическое изображение формул оснований (например F е(ОН) 3)


1. Определяем валентность атомов элементов F е(ОН) 3

2. На первом месте (первый столбец) пишем химические знаки атомов металла, обозначаем их валентность F е

З. Второе место (столбец) занимают химические знаки атомов кислорода, которые присоединяются одной связью к атому металла, вторая связь пока «свободна»




4. Третье место (столбец) занимают химические знаки атомов водорода, присоединяющихся на«свободную» валентность атомов кислорода

Графическое изображение формул кислот (например, Н 2 SO 4 )

l Vl ll

1. Определяем валентность атомов элементов Н 2 SO 4 .

2. На первом месте (первый столбец) пишем химические знаки атомов водорода в один столбец с обозначением валентности

Н—

Н—

З. Второе место (столбец) занимают атомы кислорода, присоединяясь одной валентной связью к атому водорода, при этом вторая валентность каждого атома кислорода пока «свободна»

Н— О —

Н— О —

4. Третье место (столбец) занимают химические знаки атомов кислотообразователя с обозначением валентности


5. На «свободные» валентности атома кислотообразователя присоединяются атомы кислорода согласно правилу валентности


Графическое изображение формул солей


Средние соли (например, Fe 2 SO 4 ) 3) В средних солях все атомы водорода кислоты замещены на атомы металла, поэтому при графическом изображении их формул первое место (первый столбец) занимают химические знаки атомов металла с обозначением валентности, а далее — как в кислотах, то есть второе место (столбец) занимают химические знаки атомов кислорода, третье место (столбец) — химические знаки атомов кислотообразователя, их три и они присоединяются к шести атомам кислорода. На «свободные» валентности кислотообразователя присоединяются атомы кислорода согласно правилу валентности


Кислые соли ( например, Ва(Н 2 PO 4 ) 2) Кислые соли можно рассматривать как продукты частичного замещения атомов водорода в кислоте атомами металла, поэтому при составлении графических формул кислых солей на первое место (первый столбец) записывают химические знаки атомов металла и водорода с обозначением валентности

Н—

Н—

Ва =

Н—

Н—

Второе место (столбец) занимают химические знаки атомов кислорода

Кислоты Кислотами называются сложные вещества, состоящие из атомов водорода, способных замещаться на металл, и кислотного остатка. Номенклатура кислот Различают систематические и традиционные названия кислот. Традиционные названия наиболее известных кислот и их солей приведены в таблице 1. Таблица 1. Название кислоты Формула Название солей Азотистая Азотная Метаалюминиевая Ортоборная Бромоводородная Ортокремниевая Метакремниевая Марганцовистая Марганцовая Родановодородная Серная Тиосерная Сернистая Сероводородная Муравьиная Синильная (циановодородная) Угольная Уксусная Ортофосфорная Метафосфорная Фтороводородная (плавиковая) Хромовая Двухромовая Хлороводородная (соляная) Хлорноватистая Хлористая Хлорноватая Хлорная HNO2 HNO3 HAlO2 H3BO3 HBr H4SiO4 H2SiO3 H2MnO4 HMnO4 HCNS H2SO4 H2S2O3 H2SO3 H2S HCOOH HCN H2CO3 CH3COOH H3PO4 HPO3 HF H2CrO4 H2Cr2O7 HCl HClO HClO2 HClO3 HClO4 Нитриты Нитраты Метаалюминаты Ортобораты Бромиды Ортосиликаты Метасиликаты Манганаты Перманганаты Роданиды Сульфаты Тиосульфаты Сульфиты Сульфиды Формиаты Цианиды Карбонаты Ацетаты Ортофосфаты Метафосфаты Фториды Хроматы Дихроматы Хлориды Гипохлориты Хлориты Хлораты Перхлораты Систематические названия кислородсодержащих кислот строятся по следующиму правилу: в названии аниона вначале указывают число атомов кислорода, их название “оксо-“, а затем кислотообразующего элемента с добавлением суффикса -ат независимо от степени его окисления. Например: 1 H2SO4 - тетраоксосульфат (VI) водорода H2SO3 - триоксосульфат (IV) водорода H3PO4 - тетраоксофосфат (V) водорода При образовании названий кислот, содержащих в своем составе два или более атомов кислотообразующего элемента, употребляют приставки, обозначающие количество атомов кислотообразующего элемента: ди-, три-, тетра- и т.д. Например: H2S2O7 - дисерная кислота H2Cr2O7 - дихромовая кислота H2B4O7 - тетраборная кислота Названия бескислородных кислот образуют от названия кислотообразующего элемента, прибавляя окончание -водородная. Например: HCl - хлороводородная кислота H2S - сероводородная кислота Классификация кислот Кислоты классифицируют по ряду признаков. I. по составу По составу кислоты делятся на кислородсодержащие и бескислородные, а по числу содержащихся в них атомов водорода, способных замещаться на металл, - на одноосновные, двуосновные и трехосновные. Кислоты Бескислородные HF, HCl, HBr, HJ, H2S, HCN, HCNS и другие Кислородсодержащие H2SO4, H2SO3, HNO3, H3PO4, H2SiO3 и другие 2 II. по основности Основностью кислот называется число атомов водорода, способных замещаться на металл. Кислоты Одноосновные Двухосновные Трехосновные HF, HBr, HJ, HNO2, HNO3, HAlO2, HCN и другие Н2SO4, H2SO3, H2S, H2CO3 и другие H3PO4 III. по силе Кислоты Сильные НCl, HBr, HJ, H2SO4, HNO3, HMnO4, HClO4, HClO3, H2Cr2O7, H2S2O3 и другие Слабые HF, HNO2, H2SO3, H2CO3, H2SiO3, H2S, H3BO3, HCN и другие; все органические кислоты Структурные формулы кислот При составлении структурных формул бескислородных кислот следует учитывать, что в молекулах этих кислот атомы водорода связаны с атомом неметалла: H - Cl. При составлении структурных формул кислородсодержащих кислот нужно помнить, что водород с центральным атомом связан посредством атомов кислорода. Если, например, требуется составить структурные формулы серной и ортофосфорной кислот, то поступают так: 3 a) пишут один под другим атомы водорода данной кислоты. Затем через атомы кислорода черточками связывают их с центральным атомом: b) к центральному атому (с учетом валентности) присоединяют остальные атомы кислорода: Способы получения кислот показаны на схеме. Физические свойства Многие кислоты, например серная, азотная, соляная - это бесцветные жидкости. Известны также твердые кислоты: ортофосфорная H3PO4, метафосфорная HPO3. Почти все кислоты растворимы в воде. Пример нерастворимой кислоты - кремниевая H2SiO3. 4 Растворы кислот имеют кислый вкус. Так, например, многим плодам придают кислый вкус содержащиеся в них кислоты. Отсюда и название кислот: яблочная, лимонная и т.д. Химические свойства В обобщенном виде химические свойства кислот рассмотрены в таблице 2. В таблице приведены уравнения реакций, относящиеся к реакциям обмена. Следует учесть, что реакции обмена в растворах протекают до конца в следующих трех случаях: 1. если в результате реакции образуется вода, например в реакции нейтрализации; 2. если один из продуктов реакции - летучее вещество, например, серная кислота вытесняет из солей хлороводородную кислоту, потому что она более летуча; 3. если один из продуктов реакции выпадает в осадок, например, в реакции получения нерастворимых оснований. Таблица 2. Вещества, с которыми реагируют кислоты 1.С индикаторами 2. С металлами. Если металл находится в ряду активности металлов левее водорода, то выделяется водород и образуется соль. Исключение HNO3 и конц.H2SO4 3. С основными оксидами. Образуется соль и вода 4. С основаниями - реакция нейтрализации. Образуется соль и вода 5. С солями. В соответствии с рядом кислот (каждая предыдущая кислота может вытеснить из соли последующую: Примеры Лакмус становится красным Метиловый оранжевый становится розовым Фенолфталиновый становится бесцветным Zn + 2HCl → ZnCl2 + H2 t CuO + H2SO4 → CuSO4 + H2O основание + кислота → соль + вода NaOH + HCl → NaCl + H2O Na2CO3 + HCl → NaCl + H2O + CO2 t ZnCl2 (кр) + H2SO4(конц) → ZnSO4 + 2HCl HNO3 H2SO4, HCl, H2SO3, H2CO3,H2S, H2SiO3 * H3PO4 t 6. При нагревании некоторые H2SiO3 → H2O + SiO2 кислоты разлагаются. Как правило, образуются кислотный оксид и вода * Этот ряд условный. Однако в большинстве случаев реакции между кислотами и солями протекают согласно этому ряду. 5 Вопросы и задания 1. Какие вещества называются кислотами? 2. Составьте структурные формулы следующих кислот: а) угольной; б) бромоводородной; в) сернистой; г) хлорной HClO4 3. Какими способами получают кислоты? 4. Какими двумя способами можно получить: а) ортофосфорную кислоту; б) сероводородную кислоту? Напишите уравнения соответствующих реакций. 5. Начертите нижеприведенную таблицу. В соответствующих графах запишите по три уравнения реакций, в которых участвуют и образуются кислоты. Реакции разложения соединения замещения обмена 6. Приведите по три примера уравнения химических реакций, характеризующих химические свойства кислот. Отметьте, к какому типу реакций они относятся. 7. Какие из веществ, формулы которых приведены, реагируют с соляной кислотой: а) CuO; б) Cu; в) Cu(OH)2; г) Ag; д) Al(OH)3? Напишите уравнения реакций, которые осуществимы. 8. Даны схемы: Напишите уравнения реакций, которые осуществимы. 9. Какие кислоты могут быть получены при взаимодействии оксидов P2O5, Cl2O, SO2, N2O3, SO3 с водой? 10. Напишите формулы и названия кислот, соответствующие следующим кислотным оксидам: CO2, P2O5, Mn2O7, CrO3, SiO2, V2O5, Cl2O7. 6

Кислоты - электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :

HNO 3 ↔ H + + NO 3 — ;

CH 3 COOH↔ H + +CH 3 COO — .

Все кислоты классифицируют на неорганические и органические (карбоновые), которые также имеют свои собственные (внутренние) классификации.

При нормальных условияхзначительное количество неорганических кислот существуют в жидком состоянии, некоторые - в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).

Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода — маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода— твёрдые вещества, нерастворимые в воде.

Химические формулы кислот

Химические формулы кислот рассмотрим на примере нескольких представителей (как неорганических, так и органических): хлороводородной кислоте -HCl, серной кислоте - H 2 SO 4 , фосфорной кислоте — H 3 PO 4 , уксусной кислоте - CH 3 COOH и бензойной кислоте - C 6 H 5 COOH. Химическая формула показывает качественный и количественный состав молекулы (сколько и каких атомов входит в конкретное соединение) По химической формуле можно вычислить молекулярную массу кислот (Ar(H) = 1 а.е.м., Ar(Cl) = 35,5 а.е.м., Ar(P) = 31 а.е.м., Ar(O) = 16 а.е.м., Ar(S) = 32 а.е.м., Ar(C) = 12 а.е.м.):

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);

Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.

Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);

Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.

Mr(CH 3 COOH) = 3×Ar(С) + 4×Ar(H) + 2×Ar(O);

Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.

Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);

Mr(C 6 H 5 COOH) = 7×12 + 6×1 + 2×16 = 84 + 6 + 32 = 122.

Структурные (графические) формулы кислот

Структурная (графическая) формула вещества является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы. Укажем структурные формулы каждого из вышеуказанных соединений:

Рис. 1. Структурная формула хлороводородной кислоты.

Рис. 2. Структурная формула серной кислоты.

Рис. 3. Структурная формула фосфорной кислоты.

Рис. 4. Структурная формула уксусной кислоты.

Рис. 5. Структурная формула бензойной кислоты.

Ионные формулы

Все неорганические кислоты являются электролитами, т.е. способны диссоциировать в водном растворе на ионы:

HCl ↔ H + + Cl — ;

H 2 SO 4 ↔ 2H + + SO 4 2- ;

H 3 PO 4 ↔ 3H + + PO 4 3- .

Примеры решения задач

ПРИМЕР 1

Задание При полном сгорании 6 г органического вещества образовалось 8,8 г оксида углерода (IV) и 3,6 г воды. Определите молекулярную формулу сожженного вещества, если известно, что его молярная масса равна 180 г/моль.
Решение Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у»и «z» соответственно:

C x H y O z + O z →CO 2 + H 2 O.

Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м.

m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C);

m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H);

Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m(C) = ×12 = 2,4 г;

m(H) = 2×3,6 / 18 ×1= 0,4 г.

m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2,4 - 0,4 = 3,2 г.

Определим химическую формулу соединения:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z= 2,4/12:0,4/1:3,2/16;

x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1.

Значит простейшая формула соединения CH 2 Oи молярную массу 30 г/моль .

Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс:

M substance / M(CH 2 O) = 180 / 30 = 6.

Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C 6 H 12 O 6 . Это глюкоза или фруктоза.

Ответ C 6 H 12 O 6

ПРИМЕР 2

Задание Выведите простейшую формулу соединения, в котором массовая доля фосфора составляет 43,66%, а массовая доля кислорода - 56,34%.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов фосфора в молекуле через «х», а число атомов кислорода через «у»

Найдем соответствующие относительные атомные массы элементов фосфора и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(P) = 31; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = ω(P)/Ar(P) : ω (O)/Ar(O);

x:y = 43,66/31: 56,34/16;

x:y: = 1,4: 3,5 = 1: 2,5 = 2: 5.

Значит простейшая формула соединения фосфора и кислорода имеет вид P 2 O 5 . Это оксид фосфора (V).

Ответ P 2 O 5