Что такое современная биология. Роль биологии в современном обществе. Традиционная или натуралистическая биология

Вопрос 1. Введение в биологию

1. Определение биологии

Биология – наука о жизни . Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом изучения биологии являются живые организмы, их строение, функции, их природные сообщества. Термин «биология», предложенный в 1802 г. впервые Ж.Б. Ламарком, происходит от двух греческих слов: bios - жизнь и logos – наука. Вместе с астрономией, физикой, химией, геологией и другими науками, изучающими природу, биология относится к числу естественных наук. В общей системе знаний об окружающем мире другую группу наук составляют социальные, или гуманитарные (лат. humanitas – человеческая природа), науки, изучающие закономерности развития человеческого общества.

2. Современная биология

Классификацией живых существ занимается систематика.

Ряд биологических наук изучает морфологию, т. е. строение организмов, другие – физиологию, т. е. процессы, протекающие в живых организмах, и обмен веществ между организмами и средой. К морфологическим наукам относятся анатомия, изучающая макроскопическую организацию животных и растений, и гистология – наука о тканях и о микроскопическом строении тела.

Многие общебиологические закономерности являются предметом изучения цитологии, эмбриологии, геронтологии, генетики, экологии, дарвинизма и других наук.

3. Наука о клетке

Цитология – наука о клетке. Благодаря применению электронного микроскопа, новейших химических и физических методов исследования современная цитология изучает строение и жизнедеятельность клетки не только на микроскопическом, но и на субмикроскопическом, молекулярном уровне.

4. Эмбриология и генетика

Эмбриология изучает закономерности индивидуальности развития организмов, развитие зародыша. Геронтология – учение о старении организмов и борьбе за долголетие.

Генетика – наука о закономерностях изменчивости и наследственности. Она является теоретической базой селекции микроорганизмов, культурных растений и домашних животных.

5. Экологические науки
6. Палеонтология. Антропология

Палеонтология изучает вымершие организмы, ископаемые останки прежней жизни.

Дарвинизм , или эволюционное учение, рассматривает общие закономерности исторического развития органического мира.

Антропология – наука о происхождении человека и его рас. Правильное понимание биологической эволюции человека невозможно без учета закономерностей развития человеческого общества, поэтому антропология является не только биологической, но и социальной наукой.

7. Связь биологии с другими науками

Во всех теоретических и практических медицинских науках используются общебиологические закономерности.

Вопрос 2. Методы биологических наук

1. Основные методы биологии

Основными частными методами в биологии являются:

Описательный,

Сравнительный,

Исторический,

Экспериментальный.

Для того чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ранний период развития биологии , который, однако, не утратил значения и в настоящее время.

Еще в XVIII в. получил распространение сравнительный метод, позволяющий путем сопоставления изучать сходство и различие организмов и их частей. На принципах этого метода была основана систематика и сделано одно из крупнейших обобщений – создана клеточная теория. Сравнительный метод перерос в исторический , но не потерял своего значения и сейчас.

2. Исторический метод

Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функций. Утверждением в биологии исторического метода наука обязана Ч. Дарвину.

3. Экспериментальный метод

Экспериментальный метод исследования явлений природы связан с активным воздействием на них путем постановки опытов (экспериментов) в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении тех же условий. Эксперимент обеспечивает не только более глубокое, чем другие методы, проникновение в сущность явлений, но и непосредственное овладение ими.

Высшей формой эксперимента является моделирование изучаемых процессов. Блестящий экспериментатор И.П. Павлов говорил: «Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет».

Комплексное использование различных методов позволяет наиболее полно познать явления и объекты природы. Происходящее в настоящее время сближение биологии с химией, физикой, математикой и кибернетикой, использование их методов для решения биологических задач оказались весьма плодотворными.

Вопрос 3. Этапы развития биологии

1. Эволюция биологии

Развитие каждой науки находится в известной зависимости от способа производства , общественного строя, потребностей практики, общего уровня науки и техники. Первые сведения о живых организмах начал накапливать еще первобытный человек. Живые организмы доставляли ему пищу, материал для одежды и жилища. Уже в то время появилась необходимость знать свойства растений и животных, места их обитания и произрастания, сроки созревания плодов и семян, особенности поведения животных. Так постепенно не из праздной любознательности, а вследствие насущных повседневных потребностей накапливались сведения о живых организмах. Приручение животных и начало возделывания растений потребовали более глубоких сведений о живых организмах.

Первоначально накапливающийся опыт передавался устно от одного поколения другому. Появление письменности способствовало лучшему сохранению и передаче знаний.

Информация становилась полней и богаче. Однако длительное время вследствие низкого уровня развития общественного производства биологической науки еще не существовало.

2. Изучение биологии в древности

Значительный фактический материал о живых организмах был собран великим врачом Греции Гиппократом (460–377 гг. до н. э.). Ему принадлежат первые сведения о строении животных и человека, описание костей, мышц, сухожилий, головного и спинного мозга. Гиппократ учил: «Необходимо, чтобы каждый врач понимал природу».

Естествознание и философия античного мира в наиболее концентрированном виде представлены в трудах Аристотеля (384–322 гг. до н. э.). Он описал более 500 видов животных и сделал первую попытку их классификации. Аристотель интересовался строением и образом жизни животных. Им были заложены основы зоологии. Аристотель оказал огромное влияние на дальнейшее развитие естествознания и философии. Работы Аристотеля в области изучения и систематизации знаний о растениях продолжил Теофраст (372–287 гг. до н. э.). Его называют «отцом ботаники». Расширением знаний о строении человеческого тела античная наука обязана римскому врачу Галену (139–200 гг. н. э.) производившему вскрытие обезьян и свиней. Труды его оказывали влияние на естествознание и медицину в течение ряда веков. Римский поэт и философ Тит Лукреций Кар , живший в I в. до н. э., в поэме «О природе вещей» выступил против религии и высказал мысль о естественном возникновении и развитии жизни.

3. Упадок науки в Средневековье

На смену рабовладельческому обществу в результате развития производительных сил и производственных отношений пришел феодализм, охватывающий период Средневековья. В эту мрачную эпоху утвердилось господство церкви с ее мистикой и реакционной идеологией. Наука переживала упадок, стала, по выражению К. Маркса , «служанкой богословия». Церковь канонизировала и объявила незыблемой истиной сочинения Аристотеля, Галена , во многом исказив их. Утверждалось, что в естествознании все проблемы уже решены учеными древности, поэтому в изучении живой природы нет необходимости. «Мудрость мира – есть безумие перед богом», – поучала церковь. Библия была объявлена книгой «божественного откровения». Все объяснения явлений природы не должны были противоречить ни Библии, ни сочинениям древних. Церковь жестоко карала всех прогрессивных мыслителей и исследователей, поэтому накопление знаний в эпоху Средневековья шло очень медленно.

4. Эпоха Возрождения и развитие науки

Важным рубежом в развитии науки являлась эпоха Возрождения (XIV–XVI вв.). С этим периодом связано зарождение нового общественного класса – буржуазии. Развивающиеся производственные силы требовали конкретных знаний. Это привело к обособлению ряда наук о природе. В XV–XVIII вв. выделились и интенсивно развивались ботаника, зоология, анатомия, физиология. Однако развивающемуся естествознанию нужно было еще отстаивать свои права на существование, вести жестокую борьбу с церковью. Еще продолжали пылать костры инквизиции. Мигель Сервет (1511–1553 гг.), открывший малый круг кровообращения, был объявлен еретиком и сожжен на костре.

5. Учение Ф. Энгельса

Характерной чертой естествознания того времени было изолированное изучение объектов природы. «Надо был исследовать предметы, прежде чем можно было приступить к исследованию процессов», – писал Ф. Энгельс . Изолированное изучение объектов природы порождало представления о ее неизменности, в том числе неизменности видов. «Видов столько, сколько их создал творец», – считал К. Линней . «Но что особенно характеризует рассматриваемый период, так это – выработка своеобразного общего мировоззрения, центром которого является представление об абсолютной неизменяемости природы», – писал Ф. Энгельс . Этот период в развитии естествознания он называл метафизическим.

Однако, как указывает Ф. Энгельс , уже тогда в метафизических представлениях начинают возникать первые бреши. В 1755 г. появилась «Всеобщая естественная история и теория неба» И. Канта (1724–1804 гг.), в которой он развил гипотезу о естественном происхождении Земли. Через 50 лет эта гипотеза получила математическое обоснование в работе П.С. Лапласа (1749–1827 гг.).

В борьбе с идеалистическими представлениями большую положительную роль сыграли французские материалисты XVIII в. – Ж. Ламетри (1709–1751 гг.), Д. Дидро (1713–1784 гг.) и др.

6. Необходимость нового подхода к изучению природы

В период быстрого развития промышленности и роста городов, потребовавшего резкого увеличения продуктов сельскохозяйственного производства, возникла необходимость в научном ведении земледелия. Потребовалось раскрытие закономерностей жизнедеятельности организмов, истории их развития. Для решения этих задач нужен был новых подход к изучению природы. В науку начинают проникать идеи о всеобщей связи явлений, изменяемости природы, эволюции органического мира.

Академик Российской академии наук К.Ф. Вольф (1733–1794 гг.), исследуя зародышевое развитие животных, выяснил, что индивидуальное развитие связано с новообразованием и преобразованием частей эмбриона. По словам Ф. Энгельса, Вольф произвел в 1759 г. первое нападение на теорию постоянства видов. В 1809 г. Ж.Б. Ламарк (1744–1829 гг.) выступил с первой теорией эволюции. Однако фактического материала для обоснования теории эволюции еще было недостаточно. Ламарку не удалось открыть основные закономерности развития органического мира, и его теория не была признана современниками.

7. Возникновение новых наук

В первой половине XIX в. возникли новые науки – палеонтология, сравнительная анатомия животных и растений, гистология и эмбриология. Знания, накопленные естествознанием в первой половине XIX в., явились прочной основой для эволюционной теории Ч. Дарвина. Его труд «Происхождение видов» (1859 г.) знаменовал собой переломный момент в развитии биологии: с него началась новая эпоха в истории естествознания. Вокруг учения Дарвина возникает ожесточенная идеологическая борьба, но идея эволюционного развития быстро завоевывает всеобщее признание. Вторая половина XIX в. характеризуется плодотворным проникновением идей дарвинизма во все области биологии.

8. Распад науки на отдельные отрасли

Для биологии ХХ в. характерны два процесса. Во-первых, вследствие накопления огромного фактического материала прежние единые науки начинают распадаться на отдельные отрасли. Так, из зоологии выделились энтомология, гельминтология, протозоология и многие другие отрасли, из физиологии – эндокринология, физиология высшей нервной деятельности и т. д. Во-вторых, намечается тенденция к сближению биологии с другими науками : возникли биохимия, биофизика, биогеохимия и др. Появление пограничных наук указывает на диалектическое единство многообразных форм существования и развития материи, способствует преодолению метафизического разобщения в изучении форм ее существования. В последние десятилетия в связи с бурным развитием техники и новейшими достижениями в ряде областей естествознания возникли молекулярная биология, бионика, радиобиология, космическая биология.

Молекулярная биология – область современного естествознания. Используя теоретические основы и экспериментальные методы химии и молекулярной физики, она дает возможность исследовать биологические системы на молекулярном уровне.

Бионика изучает функции и строение организмов с целью использования тех же принципов при создании новой техники. Если до настоящего времени биология была одной из теоретических основ медицины и сельского хозяйства, то ныне становится также одной из основ техники будущего.

Появление радиобиологии – учения о действии ионизирующих излучений на живые организмы – связано с открытием биологического действия рентгеновских и гамма-лучей, особенно после обнаружения природных источников радиоактивности и создания искусственных источников ионизирующих излучений.

До недавнего прошлого биология оставалась чисто земной наукой, изучающей формы жизни только на нашей планете. Однако успехи современной техники, позволившие создать летательные аппараты, способные преодолевать земное притяжение и выходить в космическое пространство, поставили перед биологией ряд новых задач, являющихся предметом космической биологии . В решении вопросов сегодняшнего дня вместе с биологами принимают участие математики, кибернетики, физики, химики и специалисты в других областях естествознания.

Вопрос 4. Роль биологии в системе медицинского образования

1. Связь биологии с медициной

Важность изучения биологии для медика определяется тем, что биология – это теоретическая основа медицины. «Медицина, взятая в плане теории, – это прежде всего общая биология», – писал один из крупнейших теоретиков медицины И.В. Давыдовский. Успехи медицины связаны с биологическими исследованиями, поэтому врач постоянно должен быть осведомлен о новейших достижениях биологии. Достаточно привести несколько примеров из истории науки, чтобы убедиться в тесной связи успехов медицины с открытиями, сделанными, казалось бы, в чисто теоретических областях биологии.

2. Учение Л. Пастера

Исследования Л. Пастера (1822–1895 гг.), доказавшие невозможность самопроизвольного зарождения жизни в современных условиях, открытие того, что гниение и брожение вызываются микроорганизмами, произвели переворот в медицине и обеспечили развитие хирургии. В практику были введены сначала антисептика (предупреждение заражения раны посредством химических веществ), а затем асептика (предупреждение загрязнения путем стерилизации предметов, соприкасающихся с раной). Это же открытие послужило стимулом к поискам возбудителей заразных болезней, а с обнаружением их связаны разработка профилактики и рационального лечения инфекционных болезней. Открытие клетки и изучение микроскопического строения организмов позволили глубже понять причины возникновения болезненного процесса, способствовали разработке методов диагностики и лечения. То же самое следует сказать об изучении физиологических и биохимических закономерностей. Изучение И.И. Мечниковым процессов пищеварения у низших многоклеточных организмов способствовало объяснению явлений иммунитета. Его исследования по межвидовой борьбе у микроорганизмов привели к открытию антибиотиков, используемых для лечения многих болезней.

3. Филогенетический принцип

Следует помнить, что человек выделился из животного мира. Структура и функции человеческого организма, в том числе защитные механизмы, – результат длительных эволюционных преобразований предшествующих форм. В основе патологических процессов также лежат общебиологические закономерности. Необходимой предпосылкой для понимания сущности патологического процесса является знание биологии.

Филогенетический принцип , учитывающий эволюцию органического мира, может подсказать правильный подход к созданию живых моделей для изучения и незаразных болезней и для испытания новых лекарственных препаратов. Этот же метод помогает найти правильное решение при выборе тканей для заместительной трансплантации, понять происхождение аномалий и уродств, найти наиболее рациональные пути реконструкции органа и т. д.

4. Роль генетики в медицине

Большое число болезней имеет наследственную природу. Профилактика и лечение их требуют знания генетики. Ненаследственные болезни протекают неодинаково, а их лечение проводится в зависимости от генетической конституции человека, чего не может не учитывать врач. Многие врожденные аномалии возникают вследствие воздействия неблагоприятных условий среды. Предупредить их – задача врача, вооруженного знаниями биологии развития организмов. Здоровье людей в большой мере зависит от среды, в частности от той, которую создает человечество. Знание биологических закономерностей необходимо для научно обоснованного отношения к природе, охране и использованию ее ресурсов, в том числе с целью лечения и профилактики заболеваний. Как уже говорилось, причиной многих болезней человека являются живые организмы, поэтому для понимания патогенеза (механизма возникновения и развития болезни) и закономерностей эпидемического процесса (т. е. распространения заразных болезней) необходимо изучение болезнетворных организмов.

Вопрос 5. Обмен веществ и энергии

1. Совокупность закономерностей

К числу закономерностей, совокупность которых характеризует жизнь, относятся:

Самообновление, связанное с потоком вещества и энергии;

Самовоспроизведение, обеспечивающее преемственность между сменяющими друг друга генерациями биологических систем, связанное с потоком информации;

Саморегуляция, базирующаяся на потоке вещества, энергии и информации.

Перечисленные закономерности обусловливают основные атрибуты жизни: обмен веществ и энергии, раздражимость, гомеостаз, репродукцию, наследственность, изменчивость, индивидуальное и филогенетическое развитие.

2. Обмен веществ и энергии

Характеризуя явление жизни, Ф. Энгельс писал: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

Важно отметить, что обмен веществ может иметь место и между телами неживой природы . Однако обмен веществ как свойство живого качественно отличается от обменных процессов в неживых телах. Для того чтобы показать эти отличия, рассмотрим ряд примеров.

Горящий кусок угля находится в состоянии обмена с окружающей природой: происходит включение кислорода в химическую реакцию и выделение углекислого газа. Образование ржавчины на поверхности железного предмета является следствие обмена со средой. Но в результате этих процессов неживые тела перестают быть тем, чем они были. Наоборот, для тел живой природы обмен с окружающей средой является условием их существования. В живых организмах обмен веществ приводит к восстановлению разрушенных компонентов, замене их новыми, подобными им, т. е. к самообновлению и самовоспроизведению , построению тела живого организма за счет усвоения веществ из окружающей среды.

Из сказанного следует, что организмы существуют как открытые системы. Через каждый организм идут непрерывные потоки вещества и энергии. Осуществление этих процессов обусловлено свойствами белков, особенно их каталитической активностью.

3. Места обитания микроорганизмов

Благодаря тому, что организмы – открытые системы, они находятся в единстве со средой , а физические, химические и биологические свойства окружающей среды обусловливают осуществление всех процессов жизнедеятельности. Каждый вид организмов приспособлен к обитанию лишь в определенных условиях. Это те условия, в которых происходило развитие данного вида, к которым он приспособился. Одни виды обитают только в воде, другие – на суше, одни – лишь в полярных широтах, другие – в экваториальном поясе, различные организмы приспособлены к обитанию в степях, пустынях, лесах, глубинах океанов или на вершинах гор. Немало таких, для которых средой обитания служат другие организмы (их кишечник, мышцы, кровь и т. д.).

4. Изменение окружающей среды

Не только организмы зависят от среды, но и сама окружающая среда изменяется в результате жизнедеятельности организмов. Первобытный облик нашей планеты значительно изменился под воздействием организмов: она приобрела атмосферу со свободным кислородом и почвенный покров. Из свободного кислорода образовался озон, препятствующий проникновению ультрафиолетового излучения к поверхности Земли; так возник «озоновый экран», обеспечивающий существование жизни на поверхности суши. Из зеленых растений, накопивших в себе солнечную энергию в прошлые геологические эпохи, сформировались огромные запасы богатых энергией горных пород, таких как уголь и торф. Органическое происхождение имеют известняки, мел и многие другие минералы. Растительный покров влияет на климат, древесная растительность делает его более мягким, уменьшает колебания температуры и других метеорологических факторов. Влияние неживой природы на организмы и организмов на неживые тела указывает на единство всей природы.

Биология (греч. bios – жизнь, logos – слово, учение) – совокупность наук о жизни, о живой природе. Предмет биологии - строение живых организмов, их функции, происхождение, развитие, взаимоотношения со средой. Наряду с физикой, химией, астрономией, геологией и т.д. относится к естественным наукам .

Биология - одна из старейших естественных наук, хотя термин «биология » для ее обозначения впервые был предложен лишь в 1797 г. немецким профессором анатомии Теодором Рузом (1771-1803), после чего этот термин использовали в 1800 г. профессор Дерптского университета (ныне г. Тарту) К.Бурдах (1776-1847), а в 1802 г. Ж.-Б. Ламарк (1744-1829) и Л. Тревиранус (1779-1864).

"Отцом биологии" часто называют Аристотеля (384-322 до н.э.), которому принадлежит первая классификация животных.

Каковы особенности биологии как науки?

1.1 Биология тесно связана с философией . Это связано с тем, что из 3-х фундаментальных проблем естествознания 2 являются предметом биологических исследований.

1. Проблема происхождения Вселенной, космоса, природы вообще (ей занимается физика, астрономия).

2. Проблема происхождения жизни , т.е. живого из неживого.

3. Проблема происхождения разума и человека как его носителя.

Решение этих вопросов тесно связано с решением основного вопроса философии : что первично – материя или сознание? Поэтому значительное место в биологии занимают философские аспекты.

1.2. Связь биологии с социальными и этическими проблемами.

Социал-дарвинизм, например, переносит на человеческое общество понятие "естественный отбор", различия между классами объясняются биологическими факторами. Другие примеры: расизм, пересадка органов, проблема старения.

1.3. Многоотраслевый (мультидисциплинарный) характер современной биологии.

В результате дифференциации биологии по объекту изучения возникли частные биологические науки: ботаника, зоология, микробиология (бактериология, вирусология, микология и др.).

Другое подразделение биологических наук - по уровням организации и свойствам живой материи : генетика (наследственность), цитология (клеточный уровень), анатомия и физиология (строение и функционирование организмов), экология (взаимоотношения организмов с окружающей средой).

В результате интеграции с другими науками возникли: биохимия, биофизика, радиобиология, космическая биология и др.

Т.е. биология – комплекс наук, среди них общая биология занимается изучением наиболее общих закономерностей строения, жизнедеятельности, развития, происхождения живых организмов. Главный вопрос, на который пытается ответить общая биология, – что такое жизнь?

1.4. В настоящее время биология, оставаясь теоретической основой познания живого, стала непосредственно производительной силой , рождает новые технологии: биотехнологию, генную и клеточную инженерию и др.

Прямое влияние биологии на материальное производство основано на использовании биосинтезирующей способности микроорганизмов. Уже давно в промышленных условиях осуществляется микробиологический синтез многих органических кислот, которые широко используются в народном хозяйстве и медицине. В 40-50-е годы было создано промышленное производство антибиотиков, а в начале 60-х годов - производство аминокислот. Важное место в микробиологической промышленности сейчас занимает производство ферментов, витаминов, фармпрепаратов.

Исключительно важное значение биологические науки имеют для сельскохозяйственного производства. Например, теоретической основой селекции растений и животных является генетика.

В 1972 – 1973 гг. в недрах биологической науки возникла генетическая инженерия, которая помогает решать многие жизненные проблемы: производство пищи, поиск новых источников энергии, новых путей сохранения окружающей среды, очистки ее от различных загрязнений. Всё это – примеры произошедшей революции в производительных силах.

Лекция № 1 Современный этап развития биологии

1 Введение. История развития биологии

Биология – это наука о жизни. Ее название возникло из сочетания двух греческих слов bios – жизнь и logos – учение. Этот термин впервые был предложен выдающимся французским естествоиспытателем и эволюционистом Жаном Батистом Ламарком (1802 г.) для обозначения науки о жизни как особом явлении природы.

Биология изучает строение, проявления жизнедеятельности, среду обитания всех живых организмов: бактерий, грибов, растений, животных.

Живое на Земле представлено необычайным разнообразием форм, множеством видов живых существ. В настоящее время уже известно около 500 тыс. видов растений, более 1,5 млн видов животных, большим количеством видов грибов и прокариот, населяющих нашу планету.

К основным задачам биологии относятся следующие:

1 Раскрытие общих свойств живых организмов;

2 Объяснение причин их многообразия;

3 Выявление связей между строением и условиями окружающей среды.

Важное место в этой науке занимают вопросы возникновения и законы развития жизни на Земле – эволюционное учение. Понимание этих вопросов служит не только основой научного мировоззрения, но и необходимо для решения практических задач.

Биология зародилась еще у древних греков и римлян, которые описали известные им растения и животные.

Аристотель (384 – 322 г.г. до н.э.) – основоположник многих наук - впервые попытался упорядочить знания о природе, разграничив ее на «ступени»: неорганический мир, растение, животное, человек. В труде древнеримского врача Галена (131-200 г.г. н.э.) «О частях человеческого тела» дано первое анатомо-физиологическое описание человека.

В средние века составлялись «травники», включавшие описания лекарственных растений.

В эпоху Возрождения интерес к живой природе усилился. Возникли ботаника и зоология.

Изобретение микроскопа в начале 17 века Галилеем (1564-1642) углубило представление о строении живых существ и положило начало изучению клеток и тканей.

А. Левенгук (1632-1723) увидел под микроскопом простейшие, бактерии и сперматозоиды, т.е. явился основоположником микробиологии.

Одним из главных достижений 18 века является создание Карлом Линнеем (1735 г.) системы классификации животных и растений. А в начале 19 века Ж.-Б. Ламарком в книге «Философия зоологии» (1809 г.) впервые была четко сформулирована мысль об эволюции органического мира.

Среди важнейших достижений 19 века – создание клеточной теории М. Шлейденом и Т. Шванном (1838-1839 г.г.), открытие закономерностей наследственности Менделем в 1859 г.

Переворот в биологии произвело учение Ч. Дарвина в 1859 г., который открыл движущие силы эволюции.

Начало 20 века ознаменовалось рождением генетики. Эта наука возникла в результате переоткрытия К. Корренсом, Э. Чермаком и Г. де Фризом законов наследственности, которые ранее были обнаружены Г. Менделем, но остались неизвестными биологам того времени, а также благодаря работа Т. Моргана, обосновавшего хромосомную теорию наследственности.

В 50-е годы значительных успехов достигли исследования тонкой структуры материи. В 1953 г. Д. Уотсон и Ф. Крик предложили модель структуры ДНК в виде двойной спирали и доказали, что она несет в себе наследственную информацию.

Для современной биологии наряду с детальным изучением отдельных структур и организмов характерна тенденция к целостному познанию живой природы, о чем свидетельствует развитие экологии.

Развитие биологии шло по пути последовательного упрощения предмета исследования. В результате возникли многочисленные биологические дисциплины, специализирующиеся на изучении структурно-функциональных особенностей определенных организмов. Этот путь познания – от сложного к простому – называют редукционистским . Редукционизм сводит познание к изучению элементарнейших форм существования материи. Это относится и к живой, и к неживой природе. При таком подходе человек познает законы природы, изучая вместо единого целого, отдельные его части.

Другой подход основан на виталистических принципах. В этом случае жизнь рассматривается как совершенно особое и уникальное явление, которое нельзя объяснить только действием законов физики или химии.

Поэтому основной задачей биологии как науки является истолкование всех явлений живой природы, исходя из научных законов и не забывая при этом, что целому организму присущи свойства, в корне отличающиеся от свойств частей, их составляющих. Например, нейрофизиолог может описать работу отдельного нейрона языком физики и химии, но сам феномен сознания так описать нельзя. Сознание возникает в результате коллективной работы и одновременного изменения электрохимического состояния миллионов нервных клеток, но мы до сих пор не знаем, как возникает мысль и каковы ее химические основы.

В настоящее время значение биологии возрастает с каждым годом. Возникло много биологических дисциплин и число их постоянно увеличивается. Связано это с тем, что биологию подразделяют на отдельные науки по предмету изучения: микробиология , ботаника, зоология ; выделились и развились области биологии, изучающие общие свойства живых организмов: генетика – закономерности наследования признаков; биохимия – пути превращения органических молекул; экология – взаимоотношения организмов с окружающей средой. Функции живых организмов изучает физиология.

В соответствии с уровнем организации живой материи выделились дисциплины:

молекулярная биология, цитология – учение о клетке, гистология – учение о тканях.

По мере расширения области знаний о живых организмах, появляются все новые биологические отрасли науки.

Вирусология Цитология Молекулярная

биология

Бактериология Микробиология Гистология

Микология Физиология

Фитопатология Ботаника БИОЛОГИЯ Анатомия

Орнитология

Биохимия Энзимология

Ветеринария Зоология Генетика Генная

Энтомология Экология инженерия

Эмбриология

2 Использование достижений биологических наук в деятельности человека

Биология имеет огромное значение в решении практических задач. Основные задачи ООН – продовольственная, здравоохранение, топливно-энергетическая, охрана окружающей среды.

Глобальной проблемой современности является производство пищи. Население нашей планеты приближается к 10 млрд человек. Поэтому проблема обеспечения населения продуктами питания, причем питания полноценного, становится все более острой.

В основном эти задачи решают технологические науки: растениеводство и животноводство, которые базируются на достижениях фундаментальных биологических дисциплин, таких как генетика и селекция, физиология и биохимия, молекулярная биология и экология.

На основе методов селекции, развитых и обогащенных современной генетикой, во всем мире идет интенсивный процесс создания более продуктивных сортов растений и пород животных. Важное качество новых сортов с/х культур – их приспособленность к выращиванию в условиях интенсивных технологий. С/х животные, наряду с высокой продуктивностью, должны обладать специфическими морфолого-анатомическими и физиологическими признаками, позволяющими разводить их на птицефабриках, фермах с электродойкой и стойловым содержанием, в клетках звероферм.

С каждым годом увеличивается дефицит белковой пищи, особенно белков животного происхождения, этот дефицит достигает 2,5 млрд т в год. Уже сейчас по данным ВОЗ 4% населения Земли находятся на грани голодной смерти, а хронически не доедают 10 % населения планеты.

Существуют 2 источника пищи – животная и растительная. Гораздо быстрее и легче производить растительную пищу, чем животную. Поэтому изыскиваются возможности получения пищевого белка неживотного происхождения, в первую очередь из растений – из зеленых частей, а также из семян.

Лидирующее место по извлечению белков занимает соя, это основная масличная культура в США и Японии. Кроме растительного масла, соя содержит очень много биологически полноценного белка (около 44%), который используется в пищу после извлечения из семян масла.

Белковые продукты из сои широкое распространение в западных странах получили только в последние 20-30 лет, в то время как в Китае и Японии они используются в пищу уже более 2-х тысячелетий. В этих странах традиционными являются такие продукты как тофу – соевый творог, кори-тофу – замороженный соевый творог, соевое молоко, юба – пленки, снимаемые с соевого молока при кипячении, и др. продукты.

В 1987 г. в США было выпущено на потребительский рынок 330 новых продуктов на основе белков сои, причем растительные белки применяются в самых разнообразных продуктах: от сосисок до мороженого, сыров, йогуртов, салатных приправ.

Растительные белки очень широко используются в продуктах быстрого приготовления, не требующих сложной кулинарной или достаточно длительной термической обработки. Особенно это касается США, где все более используется пища, которую можно потреблять в любом месте и в любое время – это всевозможные готовые завтраки, обеденные блюда, хлопья, палочки, подушечки и т. д. Причем используются такие блюда не только ради экономии времени, но и по соображениям «здорового питания».

Растительные белки широко используются и в приготовлении аналогов молока и молочных продуктов. В практике пищевой промышленности известно производство восстановленного молока из порошка, полученного из обезжиренной соевой муки. Имеется также целый ряд прохладительных белоксодержащих питательных напитков. Например, во Франции, Швеции, Венгрии имеются полностью автоматизированные установки по производству жидкой соевой продукции, соевых напитков или десертных блюд с натуральным ванильным или шоколадным ароматом. Эти продукты по составу соответствуют сбалансированному питанию, но в них отсутствуют лактоза и холестерин, что определяет целевое назначение для лиц, страдающих желудочно-кишечными и сердечно-сосудистыми заболеваниями.

Растительные белки широко применяются также как обогатители пшеничной муки при производстве хлеба и хлебобулочных изделий. Их применение способствует улучшению свойств теста при замесе, удлиняет срок сохранения в свежем виде.

Применяются белки и в кондитерской промышленности. Кроме традиционных добавок соевой муки, в приготовлении печенья, сухих завтраков, смесей для кексов, используются также белки из семян подсолнечника. Используются также и белки других растений – хлопчатника, люпина, фасоли, горчицы, арахиса, рапса, сурепицы. Эти белки обладают высокой биологической ценностью, кроме того, их выход из отходов масло-жировой промышленности достигает 62%.

Растительные белки применяются при изготовлении пищевых изделий как:

1 белковые обогатители;

2 заменители и аналоги мясных продуктов;

3 безаллергенные и безлактозные заменители коровьего молока для детского и диетического питания;

4 структурообразователи и наполнители, а также для образования, стабилизации и разрушения пены, например, при приготовлении имитации мясного фарша, мяса, при приготовлении теста, сосисок, взбитых изделий (украшения на кондитерских товарах), кремов и т.д.;

5 разбавители для регулирования калорийности и биологической ценности диетических пищевых изделий для создания низкокалорийных «легких» продуктов.

В последнее время кроме растительных белков предпринимаются попытки использования белков микробного происхождения, особенно много внимания исследователи уделяют дрожжам. Рост и развитие микроорганизмов не зависит от времени года, погодных условий. В качестве субстрата для размножения микроорганизмов можно использовать отходы сельского хозяйства, спиртовой, целлюлозно-бумажной промышленности, а также нефть и газ. По скорости размножения микроорганизмы не имеют себе равных в мире живых существ. Например, организм коровы весом 500 кг за сутки при усиленном полноценном питании образует 0,5 кг белка, а 500 кг дрожжей за это же время синтезируют более 50 т белка, т.е. в 100 тыс. раз больше.

Производство кормовых и пищевых белков, как растительных, так и микробных, основывается на реализации принципов биотехнологии в промышленных масштабах. На основе принципов биотехнологии широко налажен микробиологический синтез органических кислот, аминокислот, ферментов, витаминов, стимуляторов роста, средств защиты растений.

Для получения более продуктивных форм микроорганизмов используют методы генной инженерии, т.е. прямых манипуляций с индивидуальными генами. Например, зеленая плесень Penicillium glaucum вырабатывает антибиотик пенициллин в малых количествах, а используемая в промышленности плесень Penicillium notatum продуцирует этого антибиотика в 1000 раз больше и т.д.

С помощью пересадки генов биологи –селекционеры работают над созданием растений с контролируемыми сроками цветения, повышенной устойчивостью к заболеваниям, засолению почвы, со способностью к фиксации атмосферного азота (пример – томаты с одновременным созреванием плодов, что обеспечивает механическую уборку).

Теоретические достижения биологии, особенно генетики, широко применяются в медицине. Исследование наследственности человека позволяет разработать методы ранней диагностики, лечения и профилактики наследственных болезней, связанных с генами, а также хромосомными мутациями и аномалиями. Например, гемофилия, серповидно-клеточная анемия – серповидные эритроциты, наблюдается малокровие, изменение костей и др.; фенилкетонурия и т.д.

В условиях растущего воздействия человека на природу одной из коренных проблем является экологизация деятельности общества и сознания человека. Задача состоит не только в выявлении и устранении отрицательных эффектов воздействия человека на природу, например, местного загрязнения среды какими –то веществами, а главным образом в научном обосновании режимов рационального использования резервов биосферы. Негативные последствия хозяйственной деятельности приняли в последние десятилетия характер экологического кризиса, стали опасны не только для здоровья человека, но и для природной среды в целом. Поэтому еще одна из задач, стоящих перед биологией, это обеспечение сохранности биосферы и способности природы к воспроизводству.

В органическим мире выделяют 5 царств: бактерии (дробянки), растения, животные, грибы, вирусы. Эти живые организмы изучаются соответственно науками: бактериология и микробиология, ботаника, зоология, микология, вирусология. Каждая из этих наук делится на разделы. Например, зоология включает энтомологию, териологию, орнитологию, ихтиологию и др. каждая группа животных изучается по плану: анатомия, морфология, гистология, зоогеография, этология и т.д. Кроме этих разделов можно назвать ещё: биофизика, биохимия, биометрия, цитология, гистология, генетика, экологи, селекция, космическая биология, генная инженерия и много других.

Таким образом, современная биология - комплекс наук, изучающих живое.

Но эта дифференцировка привела бы науку к тупику, если бы не было интегрирующей науки - общей биологии. Она объединяет все биологические науки на теоретическом и практическом уровнях.

  • 1. Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.
  • 2. Клеточный. Клетка -- структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.
  • 3. Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии -- от момента зарождения до прекращения существования -- как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.
  • 4. Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция -- надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования -- процесс микроэволгоции.
  • 5. Биогеоценотический. Биогеоценоз -- совокупность организмов разных видов "и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества. 6. Биосферный. Биосфера -- совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.
  • 5. Практическое значение общей биологии.

В БИОТЕХНОЛОГИИ - биосинтез белков, синтез антибиотиков, витаминов, гормонов.

В СЕЛЬСКОМ ХОЗЯЙСТВЕ - селекция высокопродуктивных пород животных и сортов растений.

В ОХРАНЕ ПРИРОДЫ - разработка и внедрение методов рационального и рачительного природоиспользования.

Вопрос 1. Что изучает биология?.
Биология – наука о жизни как особом явлении природы - изучает жизнь во всех ее проявлениях: строение, функционирование живых организмов, их поведение, взаимоотношения друг с другом и окружающей средой, а также индивидуальное и историческое развитие живого.

Вопрос 2. Почему современную биологию считают комплексной наукой?
В процессе поступательного развития и по мере обогащения новыми фактами биология преобразовалась в комплекс наук, исследующих закономерности, свойственные живым существам, с разных сторон. Так, обособились биологические науки, изучающие животных (зоология), растения (ботаника), бактерий (микробиология), вирусы (вирусология). Строение организмов исследует морфология, функционирование живых систем - физиология, наследственность и изменчивость - генетика. Строение и свойства человеческого организма изучает медицина, в которой выделены самостоятельные дисциплины – анатомия, физиология, гистология, биохимия, микробиология. Но главное, что знания, получаемые каждой из этих наук, объединяются, взаимно дополняются, обогащаются и проявляются в виде биологических законов и теорий, которые носят всеобщий характер. Особенность современной биологии заключается в утверждении принципа единства главных механизмов жизнеобеспечения, осознании роли эволюционного процесса в существовании и изменениях органического мира, который включает и человека, признании первостепенной важности экологических закономерностей с распространением их на человека.
Современная биология не может развиваться обособленно от других наук. Каждый процесс или явление, характерное для живых систем, исследуется комплексно, с привлечением новейших знаний других научных областей. Поэтому в настоящее время происходит интеграция биологии с химией (биохимия), физикой (биофизика), астрономией (космическая биология).
Таким образом, современная биология возникла в результате дифференциации и интеграции разных научных дисциплин и является комплексной наукой.

Вопрос 3. Какова роль биологии в современном обществе?
Значение биологии в современном обществе заключается в том, что она служит теоретической базой многих наук. Биологические знания используются в различных сферах человеческой жизни. Биология определяет развитие современной медицины. Открытия, сделанные в физиологии, биохимии и генетике, дают возможность правильно поставить диагноз больному, подобрать эффективное лечение. Получение новых лекарственных препаратов, витаминов, биологически активных веществ позволит решить проблему профилактики многих болезней. Столь же очевидно значение биологических знаний в формировании мировоззренческих взглядов врача.
С развитием молекулярной биологии и генетики стало возможным целенаправленно изменять содержание наследственной информации человека, растений и животных. Всё это даёт толчок к развитию современной медицины и селекции. Селекционеры, благодаря знаниям законов наследственности и изменчивости, создают новые высокоурожайные сорта культурных растений, высокопродуктивные породы домашних животных, формы микроорганизмов, применяемые в пищевой промышленности, производстве кормов, фармацевтике. Медики имеют возможность в изучении наследственных заболеваний человека, и находить способы их лечения.
В технике биологические знания являются теоретической базой ряда производств пищевой, легкой, микробиологической и других отраслей промышленности. Развивается новое направление производства - биотехнология (производство продуктов питания, поиск новых источников энергии).
На современном этапе развития общества наиважнейшее значение приобрели экологические проблемы, что делает неизбежный процесс экологизации науки, в том числе и биологии как науки о живых организмах. Решение проблемы рационального использования биологических ресурсов, охраны природы и окружающей среды возможно только с применением биологии.